The Future Of Analytics

Last Thursday I have been on a panel with Admiral Poindexter on the Future of Analytics by invitation of TiE in North Carolina. TiE is the world’s largest non-profit technology entrepreneurship association.

Manny Aparicio, a good friend of mine, founder and president of Saffron Technologies opened the panel as moderator stating that data analytics is undergoing a huge transformation. Manny said, not only is there a growing demand for analytics to extract more value from data, but analytics must also be easier, faster and more accurate than ever before.

In his opening statement Dr. Poindexter pointed out that the Government misses (much like industry) the capability to bring data from different data bases together and make quantitative statements on future risks. Machine learning technologies like Associative Memory Systems could offer a unified view on disparate data from different data bases and text sources.

So far Analytics have been dominated for rear view analysis of corporate or intelligence data. Sense making and predictive capabilities have been very rarely deployed yet.

As Manny has asked me to bring in a Silicon Valley point of view I have decided to make my case for consumerization of machine learning talking about two of the companies which have received the most press coverage in recent weeks in the Silicon Valley, Groupon and Facebook.

Groupon is said by Fortune to be the company that has reached $ 1 B revenue the fastest ever. Some two years old their market cap was $ 1.35 B in April 2010. They have refused an offer by Google for some $ 6 B. Today their market cap is estimated to be $ 15 B. Why? Groupon bridges the gap between seller and buyer. The seller knows all about his product, e.g. when can it be produced at the lowest price, what are the detailed specifications, etc. The buyer on the other hand has little knowledge about the product.

Understanding the buyers needs and desires Groupon offers coupons that have to be purchased upfront and finds a good local or global producer that meets the customers demand. Groupons ads -witty and capturing- save buyers time to read through product specifications; they are fun to read too. If there are enough coupons bought for the product of the day the seller has to produce it and deliver it at the promised discounted prize; a classical win-win.

Groupon claims to have saved their online customers $ 1 B. In my opinion this is the first real biz model of the internet economy. Groupon offers global and local producers upfront buyer buy-in; the traditional coupon model lacks this risk mitigation for producers. Analytics with strong predictive capabilities are core to Groupon to preselect the right stores and producers and match them to the buyers demand. Of course, human beings take the final decision which product to promote.

The consumerization of AI techniques like machine learning offer analytics at our fingertips supporting the information worker from the sales person to the executive being deployed as associative memory systems, as in-memory data bases or on mobile devices.

Predictive analytics are essential for the productivity of enterprises. Making Sense by connecting seemingly unconnected information like

  • the failed investment by Warren Buffet in Lehman with
  • the reluctance of some European banks to trade Lehman credit swaps with
  • the near collapse of Bear Stearns which caused all the short sellers to turn their attention to Lehman and cause a run on Lehman’s stock with
  • CEO Fuld trying to put a deal together to merge Lehman and Barclays, etc

could have predict the bankruptcy of Lehmann ahead of time. A certain European bank needed 3 weeks to formulate the right query to answer the question, “how many and which of their customers had an exposure bigger than X hundred thousand dollars to Lehman”. This European bank has realized the imminent Lehman bankruptcy only on September 13, 2008 when Timothy F. Geithner, then president of the Federal Reserve Bank of New York called a meeting on the future of Lehman; two days before the actual bankruptcy filing. If this European bank had predictive analytics they would have been able to know about their customer’s exposure before this famous Friday to take appropriate action.

SAP and Saffron Technologies have shown a prototype at SAPs SAPPHIRE 2010 that could have predicted the imminent bankruptcy of Lehman well ahead of time just using public documents. These documents were ingested by SAPs ThingFinder and analyzed and triaged by Saffron’s memory base.

An associative memory base can be used for sense making because it predicts data trends, connects entities and ranks them not just at the document level (like Google) but at sentence level. The Saffron Memory base is like an RDF triple store but its schema less and much faster.

I feel honored to have been on this great panel with the admirable Admiral and fellow physicist.

About Paul Hofmann

Paul Hofmann is Associate Professor at FH Joanneum, Austria. Before joining FH Joanneum he was Executive in Residence at and Chief Innovation Officer at Alpega. He is an Advisory Board Member to Chimera IoT and a Computer Science Advisory Board Member at Stony Brook University. Paul served as CTO AI and Data Science NA, at Accenture Resources. He was the CTO of two successfully acquired startups, SpaceTime Insight (now Nokia) and Saffron Technology (now part of Intel). He also served from 2012 to 2014 as Board Member at Primal, an AI startup. Paul was Vice President Research at SAP Labs at Palo Alto from 2006 to 2011. Paul has also worked for the SAP Corporate Venturing Group. Prior to joining SAP, Paul was Senior Plant Manager at BASF’s Global Catalysts Business Unit in Ludwigshafen, Germany. Paul was visiting scientist at MIT, Cambridge in 2009. Paul was Researcher and Assistant Professor at top German and US Universities, like Northwestern University in Evanston/Chicago, Illinois, USA and at Technical University in Munich, Germany. He was a visiting scientist at MIT and gave lectures at UC Santa Cruz, HPI Postdam, Dresden Technical University and Joanneum Graz. He received his Ph.D. in Physics at the Darmstadt University of Technology, Germany, after completing his bachelor in biotechnology and a master’s degree in Chemistry from the University of Vienna.
This entry was posted in Technology and tagged , . Bookmark the permalink.